Ieee Code Of Ethics Essay


Engineering Ethics is the set of rules and guidelines that engineers adhere to as a moral obligation to their profession and to the world. Engineering is a professional career that impact lives. When ethics is not followed, disaster often occurs; these disasters not only include huge monetary costs and environmental impacts, but also often result in the loss of human life. Engineering Ethics applies to every engineer and is very important.


The National Society of Professional Engineers (NSPE) decides the overall standards and codes of ethics for all the engineering professions. The Preamble of the NSPE Code of Conduct for Engineers (2007) states:

Engineers shall at all times recognize that their primary obligation is to protect the safety, health, property, and welfare of the public. If their professional judgment is overruled under circumstances where the safety, health, property, or welfare of the public are endangered, they shall notify their employer or client and such other authority as may be appropriate.

This means that engineers should always be aware that their safety and the safety of those around them comes before anything, including any engineering projects they take on, no matter how wonderful the end product might be. That being said, engineering standards change from one professional engineering society to the next because of the work that different type of engineers do. For example, the work that a civil engineer does (e.g. construct a bridge) will be different from the work that a biomedical engineer does (e.g. making an artificial heart). However, no matter what type of engineer you are, Engineering Ethics is important because if you do not follow it you can be putting yours and someone else’s life in danger.

Electrical Engineering Ethics

Electrical Engineering is a type of engineering profession that deals with the creation of better electronics. Since our society is heading towards an era of technology, where all members of society will be affected, it is especially important for electrical engineers to follow a code of engineering ethics. For electrical engineers, an important set of guidelines is the Electrical Engineering Code of Ethics, published by IEEE (n.d.), the major professional association for engineers working in the fields of electrical, electronics, computer engineering, and communications.  The Code emphasizes above all else honesty and avoidance of endangerment to the public or the environment.

Problem Solving in Engineering Ethics

Every engineer will find himself in a conflicting position. For example, consider the case of a biomedical engineer engineering a potentially working artificial kidney. When he was on the clinical trial phase, he needs to decide whether to proceed with testing on humans. If he proceeds, and the device fails, a human test subject could die. If he succeeds, he will be saving the lives of the thousands of people who need kidneys in the future. Although he is in a touch predicament, he can make his decision better by using the steps of problem solving in engineering ethics to help him make the best decision. The steps of Problem Solving in Engineering Ethics are (Johanssen, 2009):

  • State the Problem: Clearly define what the ethical engineering problem is.
  • Get the Facts: Obtain all relevant facts to the matter (i.e. the different moral viewpoints) and then analyze them all.
  • Identify and Defend Competing Moral Viewpoints: Analyze the pro and cons of different moral viewpoints and pick the best course of action.
  • Come up with a Course of Action: Pick the best course of actions, and answer all un-answered questions.
  • Qualify the course of Action: Back up the course of action with facts or statistics.

In the scenario above, the biomedical engineer can first state the problem, which is whether or not to proceed with testing knowing that he could save the lives of thousands, or else kill the test subjects. He can then gather all the facts about the test subjects, the device he made, and the different moral viewpoints from others. He can then make a pro and con list of all the moral viewpoints. From this he must pick the best action to take and be prepared to defend it.

Reasons why Engineers Stray from the Code of Ethics

There are two main reasons why Engineers often stray from their code of ethics. The first reason is because they are overconfident in their work, which in turn causes them to neglect things that might be wrong with it. They may overlook small mistakes or remain stubborn about their beliefs because they think highly of their education level. However, in engineering, these small mistakes might be the very thing that causes a disaster (e.g. the Challenger and O-rings). Another reason why Engineers stray is that they are impatient. They are excited about their work and want to see it in action in the world, so they send it out before it’s ready. Sometimes it is not even their fault, but the fault of their authority figures (i.e. boss or managers). Their authority figures can be impatient and give them a short deadline to work on the project. Impatience does not allow room for iterations of the processes involved in design, testing, and implementing a product or project. Iterations are often needed to increase confidence that the product will work and that, more importantly, it will work safely.

Thus, it is recommended that engineers check their work at least twice and even have others check their work no matter how little time they have left or no matter how excited they are about submitting the project. If they know they have a short deadline, they can either manage their time better to have room for several revisions or ask their boss for an extension. Engineers should also try to be open to other ideas and admit that they could be wrong.

Applications of Engineering Ethics

Engineering Ethics in College/Education

The main engineering ethics problem that college students are face with is academic integrity. Academic integrity can show itself in the form of cheating by copying someone’s work, intentional cheating, plagiarism, and/or self-plagiarism.

However, professional ethics is something that can be learned even when it conflicts with personal ethics, as for example, a situation where you are personally okay with building a product that can harm the environment, yet save lives. You can learn professional ethics and realize that something that is harmful to the environment is not okay. Ethics codes can even help you see the bigger picture. For example, in the previous scenario, these codes can help you re-evaluate your ethics and realize that something that is harmful to the environment will eventually be harmful to the people around you and yourself.

Thus, there are many ethics classes in universities across the world. Some universities even require engineers to take classes on ethics. For example, Cohen et al. (2005) developed a model called the Air Model (AIR)SM to help students reflect and develop their personal code of ethics. AIR stands for Awareness (of ethical issues), Investigation (of those issues), and Responding (to those issues).

Engineering Ethics in the Professional World

In the professional world, ethical engineering problems come up in many cases. One of these includes the case of a professional using someone else’s work that is published in the widespread market of publication. Another is the case of a professional using someone else’s work that is not published yet and stealing their idea. Engineers who have good engineering ethics often have a good sense of the value of life. They don’t hesitate to admit that they made a mistake because they know that the cost of not owning up to your mistakes can have disastrous consequences. It might even cost a human life.

Engineering Ethics in Companies

Not only do individual engineers have to be conscious of engineering ethics, but also companies. Companies have to be aware of their Corporate Social Responsibility and Environmental Responsibility. Corporate Social Responsibility is a company’s responsibility to give back to the community that they profit from and to behave ethically so that both they and their community can benefit. Environmental Responsibility is a business’s initiative to leave the environment (where it is taking its resources from) the same, if not better, that it is found it.

Engineering Ethics applied to Senior Design Project

Thus, as seniors in college, we are making the transition from an academic environment to a professional environment. The further we are in our career path, the more important ethics is, especially engineering ethics. Thus, the soon we start defining our ethics the better, beginning with our final project in college and the first design project of our lives: our Senior Design Project.

Cited References

  • Bowen, W. Richard. (2009). Engineering Ethics. United Kingdom: Springer, 2009. OCLC WorldCat Permalink:
  • Cohen, P., McDaniels, M., & Qualters, D. M. (2005). Air Model: A Teaching Tool For Cultivating Reflective Ethical Inquiry. College Teaching, 53(3), 120–127. DOI: 10.3200/CTCH.53.3.120-127
  • IEEE. (n.d.) IEEE Code of Ethics. Retrieved from
  • Jonassen, D. H., Shen, D., Marra, R. M.,…Lohani, V. K. (2009). Engaging and Supporting Problem Solving in Engineering Ethics. Journal of Engineering Education, 98(3), 235–254. DOI: 10.1002/j.2168-9830.2009.tb01022.x
  • Martin, M. W., & Schinzinger, R. (2005). Ethics in engineering. Boston: McGraw-Hill. OCLC WorldCat Permalink:
  • NSPE. (2007). NSPE Code of Conduct. Retrieved from
  • Uff, J. (2002). Engineering Ethics: Do Engineers Owe Duties to the Public? Royal Academy of Engineering. Retrieved from

Additional Resources

  • Barakat, N. (2011). Engineering ethics: A critical dimension of the profession. In 2011 IEEE Global Engineering Education Conference (EDUCON) (pp. 159–164). Presented at the 2011 IEEE Global Engineering Education Conference (EDUCON). DOI: 10.1109/EDUCON.2011.5773130
  • Davis, M. (1991). Thinking Like an Engineer: The Place of a Code of Ethics in the Practice of a Profession. Philosophy & Public Affairs, 20(2), 150-167. Retrieved from
  • Floyd, R. E. (2012). Ethics for Engineers? IEEE Potentials, 31(2), 4–5. DOI: 10.1109/MPOT.2011.2177759
  • Maxey, M. N. (1993). Engineering in search of ethics. IEEE Circuits and Devices Magazine, 9(1), 30–34. DOI: 10.1109/101.180741
  • Rogers, D. A., & Ribeiro, P. F. (2004). Work in progress – ethics integrated into engineering courses. In Frontiers in Education, 2004. FIE 2004. 34th Annual (pp. S1E/22–S1E/23 Vol. 3). Presented at the Frontiers in Education, 2004. FIE 2004. 34th Annual. DOI: 10.1109/FIE.2004.1408696
  • Stephan, K. D. (2001). Is engineering ethics optional? IEEE Technology and Society Magazine, 20(4), 6–12. DOI: 10.1109/44.974502

Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. As a scholarly discipline, it is closely related to subjects such as the philosophy of science, the philosophy of engineering, and the ethics of technology.

Background and origins[edit]

The 18 th century and growing concern[edit]

As engineering rose as a distinct profession during the 19th century, engineers saw themselves as either independent professional practitioners or technical employees of large enterprises. There was considerable tension between the two sides as large industrial employers fought to maintain control of their employees.[1]

In the United States growing professionalism gave rise to the development of four founding engineering societies: The American Society of Civil Engineers (ASCE) (1851), the American Institute of Electrical Engineers (AIEE) (1884),[2] the American Society of Mechanical Engineers (ASME) (1880), and the American Institute of Mining Engineers (AIME) (1871).[3] ASCE and AIEE were more closely identified with the engineer as learned professional, where ASME, to an extent, and AIME almost entirely, identified with the view that the engineer is a technical employee.[4]

Even so, at that time ethics was viewed as a personal rather than a broad professional concern.[5][6]:6

Turning of the 20th century and turning point[edit]

When the 19th century drew to a close and the 20th century began, there had been series of significant structural failures, including some spectacular bridge failures, notably the Ashtabula River Railroad Disaster (1876), Tay Bridge Disaster (1879), and the Quebec Bridge collapse (1907). These had a profound effect on engineers and forced the profession to confront shortcomings in technical and construction practice, as well as ethical standards.[7]

One response was the development of formal codes of ethics by three of the four founding engineering societies. AIEE adopted theirs in 1912. ASCE and ASME did so in 1914.[8] AIME did not adopt a code of ethics in its history.[4]

Concerns for professional practice and protecting the public highlighted by these bridge failures, as well as the Boston molasses disaster (1919), provided impetus for another movement that had been underway for some time: to require formal credentials (Professional Engineering licensure in the US) as a requirement to practice. This involves meeting some combination of educational, experience, and testing requirements.[9]

In 1950, the Association of German Engineers developed an oath for all its members titled 'The Confession of the Engineers', directly hinting at the role of engineers in the atrocities committed during World War II.[10][11][12]

Over the following decades most American states and Canadian provinces either required engineers to be licensed, or passed special legislation reserving title rights to organization of professional engineers.[13] The Canadian model is to require all persons working in fields of engineering that posed a risk to life, health, property, the public welfare and the environment to be licensed, and all provinces required licensing by the 1950s.

The US model has generally been only to require the practicing engineers offering engineering services that impact the public welfare, safety, safeguarding of life, health, or property to be licensed, while engineers working in private industry without a direct offering of engineering services to the public or other businesses, education, and government need not be licensed. This has perpetuated the split between professional engineers and those in private industry.[14] Professional societies have adopted generally uniform codes of ethics.

Recent developments[edit]

Efforts to promote ethical practice continue. In addition to the professional societies and chartering organizations efforts with their members, the Canadian Iron Ring and American Order of the Engineer trace their roots to the 1907 Quebec Bridge collapse. Both require members to swear an oath to uphold ethical practice and wear a symbolic ring as a reminder.

In the United States, the National Society of Professional Engineers released in 1946 its Canons of Ethics for Engineers and Rules of Professional Conduct, which evolved to the current Code of Ethics, adopted in 1964. These requests ultimately led to the creation of the Board of Ethical Review in 1954. Ethics cases rarely have easy answers, but the BER's nearly 500 advisory opinions have helped bring clarity to the ethical issues engineers face daily.[15]

Currently, bribery and political corruption is being addressed very directly by several professional societies and business groups around the world.[16][17] However, new issues have arisen, such as offshoring, sustainable development, and environmental protection, that the profession is having to consider and address.

General principles[edit]

Engineers, in the fulfillment of their professional duties, shall hold paramount the safety, health, and welfare of the public
— National Society of Professional Engineers, [18]
A practitioner shall, regard the practitioner's duty to public welfare as paramount."
— Professional Engineers Ontario, [19]

Codes of engineering ethics identify a specific precedence with respect to the engineer's consideration for the public, clients, employers, and the profession.

Many engineering professional societies have prepared codes of ethics. Some date to the early decades of the twentieth century.[13] These have been incorporated to a greater or lesser degree into the regulatory laws of several jurisdictions. While these statements of general principles served as a guide, engineers still require sound judgment to interpret how the code would apply to specific circumstances.

The general principles of the codes of ethics are largely similar across the various engineering societies and chartering authorities of the world,[20] which further extend the code and publish specific guidance.[21] The following is an example from the American Society of Civil Engineers:[22]

  1. Engineers shall hold paramount the safety, health and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of their professional duties.[22]
  2. Engineers shall perform services only in areas of their competence.[22]
  3. Engineers shall issue public statements only in an objective and truthful manner.[22]
  4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees, and shall avoid conflicts of interest.[22]
  5. Engineers shall build their professional reputation on the merit of their services and shall not compete unfairly with others.
  6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity, and dignity of the engineering profession and shall act with zero-tolerance for bribery, fraud, and corruption.[22]
  7. Engineers shall continue their professional development throughout their careers, and shall provide opportunities for the professional development of those engineers under their supervision.[22]

Obligation to society[edit]

The paramount value recognized by engineers is the safety and welfare of the public. As demonstrated by the following selected excerpts, this is the case for professional engineering organizations in nearly every jurisdiction and engineering discipline:

  • Institute of Electrical and Electronics Engineers: "We, the members of the IEEE, … do hereby commit ourselves to the highest ethical and professional conduct and agree: 1. to accept responsibility in making decisions consistent with the safety, health and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;"[23]
  • Institution of Civil Engineers: "Members of the ICE should always be aware of their overriding responsibility to the public good. A member’s obligations to the client can never override this, and members of the ICE should not enter undertakings which compromise this responsibility. The ‘public good’ encompasses care and respect for the environment, and for humanity’s cultural, historical and archaeological heritage, as well as the primary responsibility members have to protect the health and well being of present and future generations."[24]
  • Professional Engineers Ontario: "A practitioner shall, regard the practitioner's duty to public welfare as paramount."[19]
  • National Society of Professional Engineers: "Engineers, in the fulfillment of their professional duties, shall: Hold paramount the safety, health, and welfare of the public."[18]
  • American Society of Mechanical Engineers: "Engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties."[25]
  • Institute of Industrial Engineers: "Engineers uphold and advance the integrity, honor and dignity of the engineering profession by: 2. Being honest and impartial, and serving with fidelity the public, their employers and clients."[26]
  • American Institute of Chemical Engineers: "To achieve these goals, members shall hold paramount the safety, health and welfare of the public and protect the environment in performance of their professional duties."[27]
  • American Nuclear Society: "ANS members uphold and advance the integrity and honor of their professions by using their knowledge and skill for the enhancement of human welfare and the environment; being honest and impartial; serving with fidelity the public, their employers, and their clients; and striving to continuously improve the competence and prestige of their various professions."[28]
  • Society of Fire Protection Engineers: "In the practice of their profession, fire protection engineers must maintain and constantly improve their competence and perform under a standard of professional behavior which requires adherence to the highest principles of ethical conduct with balanced regard for the interests of the public, clients, employers, colleagues, and the profession."[29]

Responsibility of engineers

The engineer recognizes that the greatest merit is the work and exercises her profession committed to serving society, attending to the welfare and progress of the majority. By transforming nature for the benefit of mankind, the engineer must increase her awareness of the world as the abode of humanity, her interest in the universe as a guarantee of overcoming her spirit, and knowledge of reality to make the world fairer and happier. The engineer should reject any paper that is intended to harm the general interest, thus avoiding a situation that might be hazardous or threatening to the environment, life, health, or other rights of human beings. It is an inescapable duty of the engineer to uphold the prestige of the profession, to ensure its proper discharge, and to maintain a professional demeanor rooted in ability, honesty, fortitude, temperance, magnanimity, modesty, honesty, and justice; with the consciousness of individual well-being subordinate to the social good. The engineer and her employer must ensure the continuous improvement of her knowledge, particularly of her profession, disseminate her knowledge, share her experience, provide opportunities for education and training of workers, provide recognition, moral and material support to the school where she studied, thus returning the benefits and opportunities she and her employer have received. It is the responsibility of the engineer to carry out her work efficiently and to support the law. In particular, she must ensure compliance with the standards of worker protection as provided by the law. As a professional, the engineer is expected to commit herself to high standards of conduct (NSPE). [1] 11/27/11


Main article: Whistleblower

A basic ethical dilemma is that an engineer has the duty to report to the appropriate authority a possible risk to others from a client or employer failing to follow the engineer's directions. According to first principles, this duty overrides the duty to a client and/or employer.[30] An engineer may be disciplined, or have their license revoked, even if the failure to report such a danger does not result in the loss of life or health.[31]

In many cases, this duty can be discharged by advising the client of the consequences in a forthright matter, and ensuring the client takes the engineer's advice. In very rare cases, where even a governmental authority may not take appropriate action, the engineer can only discharge the duty by making the situation public.[32] As a result, whistleblowing by professional engineers is not an unusual event, and courts have often sided with engineers in such cases, overruling duties to employers and confidentiality considerations that otherwise would have prevented the engineer from speaking out.[33]


There are several other ethical issues that engineers may face. Some have to do with technical practice, but many others have to do with broader considerations of business conduct. These include:[21]

  • Relationships with clients, consultants, competitors, and contractors
  • Ensuring legal compliance by clients, client's contractors, and others
  • Conflict of interest
  • Bribery and kickbacks, which also may include:
    • Gifts, meals, services, and entertainment
  • Treatment of confidential or proprietary information
  • Consideration of the employer’s assets
  • Outside employment/activities (Moonlighting)

Some engineering societies are addressing environmental protection as a stand-alone question of ethics.[22]

The field of business ethics often overlaps and informs ethical decision making for engineers.

Case studies and key individuals[edit]

Petroski notes that most engineering failures are much more involved than simple technical mis-calculations and involve the failure of the design process or management culture.[34] However, not all engineering failures involve ethical issues. The infamous collapse of the first Tacoma Narrows Bridge, and the losses of the Mars Polar Lander and Mars Climate Orbiter were technical and design process failures.

These episodes of engineering failure include ethical as well as technical issues.

  • General Motors ignition switch recalls (2014)
  • Space Shuttle Columbia disaster (2003)
  • Space Shuttle Challenger disaster (1986)
  • Therac-25 accidents (1985 to 1987)
  • Chernobyl disaster (1986)
  • Bhopal disaster (1984)
  • Kansas City Hyatt Regency walkway collapse (1981)
  • Love Canal (1980), Lois Gibbs
  • Three Mile Island accident (1979)
  • Citigroup Center (1978),
  • Ford Pinto safety problems (1970s)
  • Minamata disease (1908–1973)
  • Chevrolet Corvair safety problems (1960s), Ralph Nader, and Unsafe at Any Speed
  • Boston molasses disaster (1919)
  • Quebec Bridge collapse (1907), Theodore Cooper
  • Johnstown Flood (1889), South Fork Fishing and Hunting Club
  • Tay Bridge Disaster (1879), Thomas Bouch, William Henry Barlow, and William Yolland
  • Ashtabula River Railroad Disaster (1876), Amasa Stone



  • American Society of Civil Engineers (2010) [1914]. Code of Ethics. Reston, Virginia, USA: ASCE Press. Retrieved 2011-12-07. 
  • American Society of Civil Engineers (2000). Ethics Guidelines for Professional Conduct for Civil Engineers(PDF). Reston, Virginia, USA: ASCE Press. Retrieved 2013-11-30. 
  • Institution of Civil Engineers (2004). Royal Charter, By-laws, Regulations and Rules. Retrieved 2006-10-20. 
  • Layton, Edwin (1986). The Revolt of the Engineers: Social Responsibility and the American Engineering Profession. Baltimore, Maryland, USA: The Johns Hopkins University Press. ISBN 0-8018-3287-X. 
  • Petroski, Henry (1985). To Engineer is Human: the Role of Failure in Successful Design. St Martins Press. ISBN 0-312-80680-9. 
  • National Society of Professional Engineers (2007) [1964]. Code of Ethics(PDF). Alexandria, Virginia, USA: NSPE. Retrieved 2006-10-20. 

Further reading[edit]

  • Alford, C.F. (2002). Whistleblowers: Broken Lives and Organizational Power, Cornell University Press.
  • Fleddermann, C.B. (2011). Engineering Ethics, Prentice Hall, 4th edition.
  • Glazer, M.P. (1991).Whistleblower, New York, NY: Basic Books.
  • Harris, C.E., M.S. Pritchard, and M.J. Rabins (2008).Engineering Ethics: Concept and Cases, Wadsworth Publishing, 4th edition.
  • Huesemann, Michael H., and Joyce A. Huesemann (2011). Technofix: Why Technology Won’t Save Us or the Environment, Chapter 14, “Critical Science and Social Responsibility”, New Society Publishers, Gabriola Island, British Columbia, Canada, ISBN 0865717044, 464 pp.
  • Martin, M.W., and R. Schinzinger (2004). Ethics in Engineering, McGraw-Hill, 4th edition.
  • Van de Poel, I., and L. Royakkers (2011). Ethics, Technology, and Engineering: An Introduction, Wiley-Blackwell.

External links[edit]


Ethical Decision Making
Code of Ethics


Act, Bylaws and Code of Ethics
EGGP Code of Ethics
Code of Ethics
Code of Ethics (See link on front page.)
  • L'Ordre des ingénieurs du Québec (OIQ)
Code of Ethics of Engineers
The Ritual of the Calling of an Engineer
Software Ethics - A Guide to the Ethical and Legal Use of Software for Members of the University Community of the University of Western Ontario


Ethical principles of engineering profession


Code of Ethics

Sri Lanka[edit]

Code of Ethics

United Kingdom[edit]

  • Association for Consultancy and Engineering (ACE)
Anti-Corruption Action Statement
Royal Charter, By-laws, Regulations and Rules
Professional ethics and the IET
Statement of Ethical Principles

United States[edit]

Online Ethics Center of the National Academy of Engineering
  • List of links to various professional and scientific societies' codes of ethics
Code of Ethics
Board of Ethical Review and BER Cases
Ethics Resources and References
Code of Ethics
Code of Ethics
Standards of Professional Conduct for Civil Engineers
Code of Ethics
The Obligation of an Engineer
Code of Ethics


The Boston molasses disaster provided a strong impetus for the establishment of professional licensing and codes of ethics in the United States.
William LeMessurier's response to design deficiencies uncovered after construction of the Citigroup Center is often cited as an example of ethical conduct.
  1. ^Layton (1986). pp. 6-9
  2. ^The AIEE merged with the Institute of Radio Engineers (IRE) (1912) in 1963 to form the IEEE.
  3. ^AIME is now the umbrella organization of four technical societies: the Society for Mining, Metallurgy, and Exploration (SME) (1957), The Minerals, Metals & Materials Society (TMS) (1957), the Society of Petroleum Engineers (SPE) (1957), and the Association For Iron and Steel Technology (AIST) (1974). Neither AIME, nor its subsidiary societies have adopted a formal code of ethics.
  4. ^ abLayton (1986) p. 35.
  5. ^ASCE (2000). p. 10.
  6. ^Flavell, Eric. "The ASCE Code of Ethics: PRINCIPLES, STUDY, AND APPLICATION". ASCE. Archived from the original on 2013-12-03. Retrieved Nov 27, 2013. 
  7. ^ASME member H.F.J. Porter had proposed as early as 1892 that the engineering societies adopt uniform membership, education, and licensing requirements as well as a code of ethics. (Layton (1986). pp. 45-46)
  8. ^Layton (1986). pp. 70 & 114.
  9. ^Layton (1986). pp. 124-125.
  10. ^Dietz, Burkhard, ed. (1996). Technische Intelligenz und "Kulturfaktor Technik". p. 29. 
  11. ^Lorenz, Werner; Meyer, Torsen (2004). Technik und Verantwortung im Nationalsozialismus. p. 55. 
  12. ^
  13. ^ abLayton (1986)
  14. ^Layton (1986). pp. 6-7
  15. ^"Board of Ethical Review". National Society of Professional Engineers. 2013. Retrieved Nov 29, 2013. 
  16. ^Transparency International and Social Accountability International (2009). Business Principles for Countering Bribery. Retrieved 2013-11-29. 
  17. ^"Report Details Guidelines to Reduce Corruption in Engineering and Construction Industry" (Press release). ASCE. 2005-06-17. Archived from the original on 2007-09-30. Retrieved 2006-10-20. 
  18. ^ ab"NSPE Code of Ethics for Engineers". National Society of Professional Engineers. 2013. Retrieved Nov 29, 2013. 
  19. ^ abPEO. Professional Engineers Ontario Code of Ethics. Section 77.2.i of the Ontario Regulation 941. Retrieved: 2006-10-19.
  20. ^ICE (2004).
  21. ^ abASCE (2000).
  22. ^ abcdefghASCE [1914] (2006).
  23. ^IEEE (2006). Code of EthicsCanon 1.. Retrieved: 2006-10-19.
  24. ^ICE (2004). p. 38.
  25. ^"Code of Ethics of Engineers". ASME. 2013. Retrieved Nov 29, 2013. 
  26. ^IIE. "Ethics". [1] Retrieved: 2011-6-01.
  27. ^AIChE (2003). Code of Ethics Retrieved: 2006-10-21.
  28. ^ANS (2003). Code of Ethics Retrieved: 2011-08-19.
  29. ^"Code of Ethics - SFPE". Retrieved 2017-05-18. 
  30. ^Weil, "Whistleblowing: What Have We Learned Since the Challenger?"
  31. ^See NSPE, Board of Ethical Review, Cases 82-5 and 88-6.
  32. ^NSPE (2006-06-30). "Final Report of the NSPE Task Force on Overruling Engineering Judgment to the NSPE Board of Directors"(PDF). Retrieved 2008-02-20. [permanent dead link]
  33. ^See the case of Shawn Carpenter.
  34. ^Petroski (1985)


Leave a Reply

Your email address will not be published. Required fields are marked *